Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Power Control for the Escape and Mariner Hybrids

2007-04-16
2007-01-0282
Ford Motor Company has developed a full hybrid electric vehicle with a power-split hybrid powertrain. There are constraints imposed by the high voltage system in such an HEV, that do not exist in conventional vehicles. A significant controls problem that was addressed in the Ford Escape and Mercury Mariner Hybrids was the determination of the desired powertrain operating point such that the vehicle attributes of fuel economy, performance and drivability are met, while satisfying these new constraints. This paper describes the control system that addressed this problem and the tests that were designed to verify its operation.
Technical Paper

Analytical Benchmarking of Body Architectural Efficiency of Competitive Vehicles

2007-04-16
2007-01-0357
Hardware benchmarking of body overall stiffness and joint stiffness of the best-in-class competitive vehicles is a common practice in the automobile industry. However, this process does not provide design insights of competitive body structures, which relate stiffness performance to key architectural designs. To overcome this drawback, a CAD body-in-prime model of a competitive vehicle is developed using laser/optical scanning technology and a corresponding CAE model is built based on the CAD data. A deep-dive structural efficiency study is conducted using this model and “pros” and “cons” of the architectural design of each individual joint and each section of major load-carrying members of this body structure are identified. This analytical benchmarking (or reverse engineering) process enables a company to adopt best-in-class design practices and achieve competitive advantages in vehicle designs.
Technical Paper

Analysis of Tapered Roller Bearing Type Hub Separations in Motor Vehicle Crashes

2007-04-16
2007-01-0734
As part of determining the circumstances of a crash, sometimes components or component assemblies are evaluated to identify if they were damaged as a result of the crash or if they lost function prior to the crash. What role the loss of function may have contributed to the crash is useful in determining if they lost function prior to the crash. The causes and conditions for a brake rotor hub separation from the spindle of a vehicle with tapered roller bearing designs are analyzed through both component level testing and full vehicle testing. Laboratory tests were performed on component assemblies where loads were applied to the wheel assembly and the residual damage to the components was documented. In addition, full vehicle testing was conducted to evaluate the effects of a hub and rotor separation on vehicle control and to document evidence on the components. Real world case studies of hub and rotor separations are presented.
Technical Paper

Comparison of the THOR and Hybrid III Lower Extremities in Laboratory Testing

2007-04-16
2007-01-1168
A comparison of the 50th percentile male THOR-LX and Hybrid III 50th percentile male dummy lower leg was conducted via component and full scale barrier testing. In the component tests, isolated THOR-LX and Hybrid III lower legs were impacted in two different test set-ups where the tibia was impacted at three different impact points. The foot without a shoe was impacted in two different test set-ups at six different impact points. A shoe impact study was also conducted to determine the effect of a shoe on the results and to determine how many impacts a shoe can withstand at each point before properties of the shoe begin to change. For these tests, the THOR-LX and Hybrid III lower legs were repeatedly impacted at four different points on the foot with a shoe. For the full scale barrier testing, the THOR-LX or Hybrid III lower legs were attached to a belted Hybrid III 50th percentile male dummy. The dummy was positioned in a compact car for each test.
Technical Paper

Torque Angle Signature Analysis of Joints with Thread Rolling Screws and Unthreaded Weld Nuts

2007-04-16
2007-01-1665
Bolted joint separation occurs when components of a joint are no longer capable of maintaining a clamp load. The clamp load of a joint is the resultant of various factors such as the strength of joining components, geometry, and the surface condition of the joined parts. The fastener installation torque is a very critical parameter that contributes towards achieving the desired clamping force at the joint during the assembly process. Thread rolling screws are increasingly being used in many automotive structural applications. The thread rolling screws are easy to install, are self aligning, and offer a torque prevailing feature with improved vibration resistance when mated with a un-threaded nut. This combination results in a robust joint and low field costs. They also offer increased joint strength by work hardening the mating nut interface.
Technical Paper

Pump/Motor Displacement Control Using High-Speed On/Off Valves

1998-09-14
981968
A four valve controller and electronic control circuits were developed to control the displacement of hydrostatic pump/motors (P/M's) utilized in an automobile with a hydrostatic transmission and hydropneumatic accumulator energy storage. Performance of the control system was evaluated. The controller uses four high-speed, two-way, single-stage poppet valves, functioning in the same manner as a 4-way, 3-position spool valve. Two such systems were used to control the displacement of two P/Ms, each system driving a front wheel of the vehicle. The valves were controlled electronically by a distributed-control dead-band circuit and valve driver boards. Testing showed that the control system's time response satisified driving demand needs, but that the control system's error was slightly larger than desired. This may lead to complications in some of the vehicle's operating modes.
Technical Paper

Laser & Fine Plasma Trimming of Sheet Metal Parts for Low Volume Production

1998-09-29
982333
This study compared laser and fine plasma technology for cutting typical electro-galvanized steel and aluminum automotive stampings. Comparisons were made of various aspects of cut quality, accuracy, disturbance of parent material, cycle time, and capital and operating costs. A sensitivity analysis was included to determine how different scenarios would impact the operating costs. It was found that both processes were capable of high quality cuts at 3800mm/min. Capital savings were achievable through the fine plasma system, but careful consideration of the specific application was essential. This work will allow for an advised comparison of options for sheet metal flexible cutting.
Technical Paper

A Three-Dimensional Design Tool for Crescent Oil Pumps

2008-04-14
2008-01-0003
Due to complexities of interaction among gears and crescent-shaped island, a crescent oil pump is one of the most difficult auto components to model using three dimensional Computational Fluid Dynamics(CFD) method. This paper will present a novel approach to address the challenges inherent in crescent oil pump modeling. The new approach is incorporated into the commercial pump design tool PumpLinx from Simerics, Inc.. The new method is applied to simulate a production crescent oil pump with inlet/outlet ports, inner/outer gears, irregular shaped crescent island and tip leakages. The pump performance curve, cavitation effects and pressure ripples are studied using this tool and will be presented in this paper. The results from the simulations are compared to the experiment data with excellent agreement. The present study shows that the proposed computational model is very accurate and robust and can be used as a reliable crescent pump design tool.
Technical Paper

Engineering Moveable Glass Window Seals of Automotive Door Using Upfront CAE

1998-09-29
982383
The traditional moveable glass window seal development process has relied heavily on physical prototypes for design verification. Due to frequent styling changes and an overall reduction in design time, physical prototypes for the glass window seals have proven to be inadequate. Utilization of computer aided engineering (CAE) tools is necessary in order to shorten lead time. CAE tools will help to decrease expensive prototyping, free up valuable manufacturing line time, and improve overall quality. A cross functional approach has been applied to expand the scope beyond traditional methods of moveable glass window seal design, such as wedged boarding, into new computerized modeling methods. The CAE was used to address major requirements of the glass window seals including glass velocity, glass stall force, sealing-ability, seal durability, seal assembly, seal appearance, and regulator motor current.
Technical Paper

Light Truck Stabilizer Bar Attachment Non-linear Fatigue Analysis

1998-11-16
982833
The stabilizer bar attachments problem can not be simply analyzed by using linear FEA methodology. The large deformation in the bushing, the elastic-plastic material property in the bushing retainer bracket, and the contact between different parts all add complexity to the problem and result in the need for an analysis method using a non-linear code, such as ABAQUS. The material properties of the bushing were experimentally determined and applied to the CAE model. It was found that using strains to estimate the fatigue life was more accurate and reliable than using stress. Many modeling techniques used in this analysis were able to improve analysis efficiency.
Technical Paper

The Effects of Flare Component Specifications on the Sealing of Double Inverted Flare Brake Tube Joints

2009-04-20
2009-01-1029
While SAE double inverted flares have been in use for decades, leaking joints continue to be a problem for OEMs in production settings consuming time and energy to detect and correct them before releasing vehicles from the assembly plant. It should be noted that this issue is limited to first-time vehicle assembly; once a flared brake tube joint is sealed at the assembly plant it remains sealed during normal customer usage. From their inception through the late 1980s most brake tubes have been 3/16″ nominal diameter. With the advent of higher flow requirements of Traction Control and Yaw/Stability control systems, larger tubes of 1/4″ and 5/16″ size have also been introduced. While it was known that the first-time sealing capability of the 3/16″ joint was not 100%, leakers were generally containable in the production environment and the joint was regarded as robust.
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Steering Grunt Noise Robustness Improvement

2009-05-19
2009-01-2095
Grunt is a structure-born noise caused by resonance of the steering gear torsion bar (T-bar) in an HPAS (Hydraulic Power Assist Steering) system. The goal of this work was to develop techniques to quantify and predict grunt in a RV (rotary valve) steering gear system. First, vehicle testing was used to identify an objective metric for grunt: y = dynamic pressure in the return line. Then, a computer simulation was developed to predict y as a function of two known control factors. The simulation results were correlated to measurements on a test vehicle. Finally, the simulation was expanded to include two additional control factors, and grunt predictions were demonstrated on a different test vehicle.
Technical Paper

A/C Moan - its Diagnostics and Control

2009-05-19
2009-01-2054
Air-conditioning (A/C) induced moan is a very commonly observed phenomenon in automotive refrigerant systems. Since most of the automotive A/C systems cycle ON/OFF four to six times every minute, the A/C induced moan is quite readily audible under engine idle and even while driving, especially under lower engine/vehicle speeds. It is not unusual for an A/C compressor to moan or not, on some vehicle/s under certain operating conditions. Most of the OEMs resolve or suppress the A/C moan potential to barely audible levels. However, under some unique and extreme operating conditions, A/C moan is quite readily induced and often results in customer complaints. This paper discusses A/C moan related root-causes, sources and paths of propagation. A systematic diagnostic test-procedure is also described to diagnose and develop the needed most cost-effective design-fixes. Finally, based on this case-study - some objective targets are recommended to suppress the A/C moan to acceptable levels.
Technical Paper

Modeling and Simulation of the Dual Drive Hybrid Electric Propulsion System

2009-04-20
2009-01-0147
The desire for improved vehicle fuel economy, driven by high gas prices and concerns over energy independence, have sparked interest and demand for hybrid electric vehicles. Hybrid electric vehicle propulsion systems exhibit complex interactions which need to be understood in order to maximize fuel economy over the range of operating modes. Model-based development processes which use vehicle system models capable of representing the functional behaviors with embedded controls are needed for fast, efficient design of vehicle control systems which manage overall energy usage. Model-based vehicle system development processes have been employed for a Dual Drive HEV system. The process for creating these vehicle system models is described along with an approach for using these models to develop HEV systems. Details of key subsystem models and the process for integration of full vehicle implementation level controls are discussed.
Technical Paper

A Systems Approach to Eliminating Squeal in a Drum Brake

2008-10-12
2008-01-2531
The traditional analysis of squeal noise for drum brakes is done in a separate approach, with CAE and laboratory/experimental techniques done independently or in a non-iterative sequential manner. In this paper, an innovative approach of directing the frequency response testing based on CAE is used and the overall process is embedded in a system approach. The drum brake design was changed to accomplish higher loads in a car. The initial results of the tests came out noise during the vehicle test. After retrieving the noisy parts from the vehicle, it was tested for frequency response, but in a directional manner suggested by the CAE model. This new approach hasn't been done before in industry practice. The CAE identified that two modes (around the noise frequency) swapped their orders compared to the old design and suggested design changes. The new design was evaluated with a mocked up prototype. This was followed by getting cast parts and testing them for frequency response.
Technical Paper

Data Communication Over Power Battery Lines

2008-10-07
2008-36-0032
Network communications are widely being deployed in vehicle electrical architecture due to its low cost for embedded electronic and advance it provides. Nowadays, different types of protocols may be used to allow the communication among the modules (e.g.: CAN, LIN, FLEX RAIL, etc). Modules may receive or send data throughout a physical layer. And they are powered up by using different types of cables, grounds and shields which create a high complexity in terms of wiring harnesses installation, weight and cost. Data and power transmission throughout a unique line is a real and promising available technology.
Technical Paper

The Handling of Non-Uniform Parts and Peak Hand Forces

2009-06-09
2009-01-2307
Due to the challenges in quantifying hand loads in manufacturing environments it is often assumed that the load is evenly distributed between the hands, even when handling parts with non-uniform mass distribution. This study estimated hand loads for six female subjects, when handling a custom part in 8 different configurations (2 weights, 4 CofM locations). The calculated hand loads varied from 20 to 50% of the weight being handled. The magnitude of asymmetrical hand loading depended on both the part orientation and the location of the CoM. Based on this study the knowledge of part weight, CofM location and hand positioning will allow the users of digital human models to perform more realistic and reliable task analysis assessments as the force distributions will be more representative of the actual loading rather than simply assuming the load is evenly distributed between the hands.
Technical Paper

Development of Universal Brake Test Data Exchange Format and Evaluation Standard

2010-10-10
2010-01-1698
Brake system development and testing is spread over vehicle manufacturers, system and component suppliers. Test equipment from different sources, even resulting from different technology generations, different data analysis and report tools - comprising different and sometimes undocumented algorithms - lead to a difficult exchange and analysis of test results and, at the same time, contributes to unwanted test variability. Other studies regarding the test variability brought up that only a unified and unambiguous data format will allow a meaningful and comparative evaluation of these data and only standardization will reveal the actual reasons of test variability. The text at hand illustrates that a substantial part of test variability is caused by a misinterpretation of data and/or by the application of different algorithms.
Technical Paper

A Comparison of Different Methods for Battery and Supercapacitor Modeling

2003-06-23
2003-01-2290
In future vehicles (e.g. fuel cell vehicles, hybrid electric vehicles), the electrical system will have an important impact on the mechanical systems in the car (e.g. powertrain, steering). Furthermore, this coupling will become increasingly important over time. In order to develop effective designs and appropriate control systems for these systems, it is important that the plant models capture the detailed physical behavior in the system. This paper will describe models of two electrical components, a battery and a supercapacitor, which have been modeled in two ways: (i) modeling the plant and controller using block diagrams in Simulink and (ii) modeling the plant and controller in Dymola followed by compiling this model to an S-function for simulation in Simulink. Both the battery and supercapacitor model are based on impedance spectroscopy measurements and can be used for highly dynamic simulations.
X